AMovingMeshMethod for Kinetic / Hydrodynamic

نویسنده

  • Heyu Wang
چکیده

This paper deals with the application of a moving mesh method for kinetic/hydrodynamic coupling model in two dimensions. With some criteria, the domain is dynamically decomposed into three parts: kinetic regions where fluids are far from equilibrium, hydrodynamic regions where fluids are near thermodynamical equilibrium and buffer regions which are used as a smooth transition. Boltzmann-BGK equation is solved in kinetic regions, while Euler equations in hydrodynamic regions and both equations in buffer regions. By a well defined monitor function, our moving mesh method smoothly concentrate the mesh grids to the regions containing rapid variation of the solutions. In each step of the mesh moving, the solutions are conservatively updated to the newmesh and the cut-off function is rebuilt first to consist with the region decomposition after the mesh moving. In such a framework, the evolution of the hybrid model and the moving mesh procedure can be implemented independently, therefore keep the advantages of both. Numerical examples are presented to demonstrate validation and efficiency of the method. AMS subject classifications: to be provided by author 10

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kinetic Modelling of Hydraulic Resistance in Colloidal System Ultrafltration: Effect of Physiochemical and Hydrodynamic Parameters

In this work, different kinetic patterns (homographic, exponential-linear and exponential) of hydraulic resistance in ultrafltration process of a colloidal system have been investigated. Exponential kinetic model, as the best approach, was employed for description of dynamic hydraulic resistance of skim milk ultrafltration at different feed flow rates (FR) (10, 30 and 46 L...

متن کامل

Kinetic derivation of the hydrodynamic equations for capillary fluids.

Based on the generalized kinetic equation for the one-particle distribution function with a small source, the transition from the kinetic to the hydrodynamic description of many-particle systems is performed. The basic feature of this interesting technique to obtain the hydrodynamic limit is that the latter has been partially incorporated into the kinetic equation itself. The hydrodynamic equat...

متن کامل

Hamiltonian formalism of two-dimensional Vlasov kinetic equation.

In this paper, the two-dimensional Benney system describing long wave propagation of a finite depth fluid motion and the multi-dimensional Russo-Smereka kinetic equation describing a bubbly flow are considered. The Hamiltonian approach established by J. Gibbons for the one-dimensional Vlasov kinetic equation is extended to a multi-dimensional case. A local Hamiltonian structure associated with ...

متن کامل

Kinetic equation for a soliton gas, its hydrodynamic reductions and symmetries

We study a new class of kinetic equations describing nonequilibrium macroscopic dynamics of soliton gases with elastic collisions. These equations represent nonlinear integro-differential systems and have a novel structure, which we investigate by studying in detail the class of N -component ‘cold-gas’ hydrodynamic reductions. We prove that these reductions represent integrable linearly degener...

متن کامل

Hydrodynamic Limit of a B.g.k. like Model on Domains with Boundaries and Analysis of Kinetic Boundary Conditions for Scalar Multidimensional Conservation Laws

Abstract. In this paper we study the hydrodynamic limit of a B.G.K. like kinetic model on domains with boundaries via BVloc theory. We obtain as a consequence existence results for scalar multidimensional conservation laws with kinetic boundary conditions. We require that the initial and boundary data satisfy the optimal assumptions that they all belong to L ∩L∞ with the additional regularity a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012